

Date Planned ://	Daily Tutorial Sheet-13	Expected Duration : 90 Min		
Actual Date of Attempt ://	Level-3	Exact Duration :		

147. For the reaction in alkaline aqueous solution,

$$3BrO^{-} \longrightarrow BrO_{3}^{-} + 2Br^{-}$$

the value of the second order (in BrO^-) rate constant at 350 K in the rate law for $-\frac{\Delta[BrO^-]}{\Delta t}$ was found to be 0.056 L $mol^{-1}s^{-1}$. Then :

- (A) rate constant is $0.019 \, L \, mol^{-1} \, s^{-1}$ when rate law is $+ \frac{\Delta [BrO_3^-]}{\Delta t}$
- (B) rate constant is $0.037 \, L \, \text{mol}^{-1} \, s^{-1}$ when rate law is $+ \frac{\Delta [Br^{-}]}{\Delta t}$
- (C) rate of the reaction is $0.056 \text{ mol } L^{-1} \text{ s}^{-1} \text{ when rate law is } [BrO^{-}] = 1 \text{ M}$
- **(D)** All of the above are correct statements

148. Acid hydrolysis of ester is first order reaction and rate constant is given by :

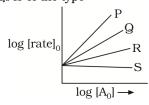
$$k = \frac{2.303}{t} log \frac{V_{\infty} - V_0}{V_{\infty} - V_t}$$

where, V_0 , V_t and V_∞ are the volume of standard NaOH required to neutralise acid present at a given time, if ester is 50% neutralised then :

$$(A) V_{\infty} = V_t$$

$$\mathbf{(B)} \qquad V_{\infty} = (V_t - V_0)$$

$$(C) V_{\infty} = 2V_t - V_0$$


$$\mathbf{(D)} \qquad V_{\infty} = 2V_t + V_0$$

149. For nth order reaction,

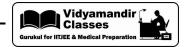
$$\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)$$
 = Rate = $k[A]_0^n$

Graph between log (rate) against [A]o is of the type

Lines P, Q, R, S are for the order:

	P	Q	R	S		P	Q	R	S
(A)	0	1	2	3	(B)	3	2	1	0
(C)	1	2	3	0	(D)	0	3	2	1

150. The vapour pressure of water is lowered from 760 mmHg to 741 mm Hg when 0.04 mole of $Ca(NO_3)_2$ is added to 4 moles H_2O . Thus van't Haff factor is :


2

(A) 3.00

(B) 2.56

(C) 1.50

(D) 1.28

151.
$$A \longrightarrow B + C$$
 (g) (g)

$$\frac{-d[A]}{dt} = k[A]$$

At the start pressure is 100 mm and after 10 min. pressure is 120 mm. Hence, rate constant (\min^{-1}) is

(A)
$$\frac{2.303}{10} \log \frac{120}{100}$$

(B)
$$\frac{2.303}{10} \log \frac{100}{20}$$

(C)
$$\frac{2.303}{10} \log \frac{100}{80}$$

(D)
$$\frac{2.303}{10} \log \frac{100}{120}$$

152. The initial rate of hydrolysis of methyl acetate (1 M) by a weak acid (HA, 1 M) is 1/1000th of that of a strong acid (HX, 1 M) at 25°C. The K_a (HA) is :

(A)
$$1 \times 10^{-4}$$

(B)
$$1 \times 10^{-5}$$

(C)
$$1 \times 10^{-6}$$

(D)
$$1 \times 10^{-3}$$